Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.

نویسندگان

  • Eric B Cummings
  • Anup K Singh
چکیده

Dielectrophoresis (DEP), a nonlinear electrokinetic transport mechanism, can be used to concentrate and sort cells, viruses, and particles. To date, microfabricated DEP-based devices have typically used embedded metal electrodes to apply spatially nonuniform, time-varying (AC) electric fields. We have developed an alternative method in which arrays of insulating posts in a channel of a microchip produce the spatially nonuniform fields needed for DEP. Electrodes may be located remotely, allowing operation of the device down to zero frequency (DC) without excessive problems of electrolysis. Applying a sufficiently large electric field across an insulating-post array produces two flow regimes through a competition between electrokinetic flow (combined electrophoresis and electroosmosis) and dielectrophoresis. "Streaming DEP" is observed when DEP dominates diffusion but is overcome by electrokinetic flow. Particles concentrated by DEP forces in areas of electric field extrema travel electrokinetically down the array in flowing streams. In an array of posts, dielectrophoretic forcing within repeated rows adds coherently to produce flowing streams of highly concentrated and rarefied particles. We demonstrate that this reinforcement is a strong function of alignment of the array with respect to the applied electric field and that the particle concentrations can be "enhanced" or "depleted" along columns of posts, enabling a novel class of continuous-flow, selective particle filter/concentrator devices. To our knowledge, this is the first observation of streaming dielectrophoresis. The second regime is "trapping DEP," in which DEP forces dominate over both diffusion and electrokinetic flow, reversibly immobilizing particles on the insulating posts, enabling inexpensive and embedded batch filter/concentrator devices. Devices can be biased electrically to manipulate particles selectively by varying the field strength to vary the relative magnitudes of electrokinetic flow and DEP. Post shapes are contoured easily to control electric field gradients and, hence, DEP behavior. Simple simulations based on similitude of fluid flow and electric field that solve the Laplace equation to obtain fluid velocity have also been developed to predict the dielectrophoretic behavior in an array of posts. These simulations are in excellent agreement with the experimental observations and provide insight into electrokinetic behavior to enable design of dielectrophoretic concentrators and sorters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis

Single-walled carbon nanotubes (SWNTs) offer unique electrical and optical properties. Common synthesis processes yield SWNTs with large length polydispersity (several tens of nanometers up to centimeters) and heterogeneous electrical and optical properties. Applications often require suitable selection and purification. Dielectrophoresis is one manipulation method for separating SWNTs based on...

متن کامل

Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water.

Insulator-based dielectrophoresis (iDEP) was utilized to separate and concentrate selectively mixtures of two species of live bacteria simultaneously. Four species of bacteria were studied: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis, B. cereus, and B. megaterium. Under an applied direct current (DC) electric field all the bacterial species exhibited negative diel...

متن کامل

A Theoretical and Experimental Investigation for a New Reduced & Reliable Life Time Estimation Method of Insulating Materials

Abstract: The big share of electrical breakdown in electrical devices failure among other factors is caused by multitasking such as electrical insulation, mechanical support, energy dissipation, Energy storage, etc. which brings many attentions to lifetime estimation of said insulation material. Up to now, there was no-general theory had been suggested for lifetime estimation of mentioned insul...

متن کامل

Electrodeless dielectrophoresis for bioanalysis: theory, devices and applications.

Dielectrophoresis is a non-destructive, label-free method to manipulate and separate (bio-) particles and macromolecules. The mechanism is based on the movement of polarizable objects in an inhomogeneous electric field. Here, microfluidic devices are reviewed that generate those inhomogeneous electric fields with insulating posts or constrictions, an approach called electrodeless or insulator-b...

متن کامل

Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.

In this work, the temperature effects due to Joule heating obtained by application of a direct current electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator-based dielectrophoresis. The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 75 18  شماره 

صفحات  -

تاریخ انتشار 2003